При определении напряжений в основаниях сооружений массива грунта обычно рассматривают как полупространство 0 ≤ z < ∞, ограниченное горизонтальной плоскостью z = 0. Грунт считают находящимся в сложном напряженно-деформированном состоянии и линейно-деформированном, поэтому для него справедливо основное положение закона Гука — линейность связи между напряжениями и деформациями.
Однако при действии внешних сил с давлениями, превышающими структурную прочность грунта, возникают не только упругие, но и значительно большей величины остаточные (пластические) деформации.
Напряжения в массивах грунтов возникают как под действием внешних нагрузок, так и от собственного веса грунта. Знание напряжений необходимо для расчетов деформаций грунтов, обусловливающих осадки и перемещения зданий и сооружений для оценки прочности, устойчивости грунтов и давления на ограждения.
Без учета распределения напряжений в грунте невозможно, например, рассчитать осадки насыпей, устоев мостов, акведуков, лотков, фундаментов искусственных и других сооружений.
Распределение напряжений в грунтовой толще зависит от следующих факторов: характера и режима нагружения массива, инженерно-геологических и гидрогеологических особенностей площадки строительства, состава и физико-механических свойств грунтов.
Давление от нагрузки, приложенной к поверхности грунтового массива, передается в грунте частицами или структурными агрегатами через точки контакта, распределяясь по мере углубления в грунт на все большую площадь.
Чтобы уяснить характер распределения напряжений, сделав допущение, представим себе грунт состоящим из одинаковых по форме и размерам твердых частиц (упрощающая модель), уложенных рядами друг на друге, как показано на рис. 6.1.
Рис. 6.1. Пример модели дискретной среды из одинаковых шаров: а — схема укладки; б — схема передачи (распределения) внешней сосредоточенной силы на частицы грунта
Как видно из рис. 6.1, на II ряд действует вес частиц I ряда, а на III ряд — частицы I и II ряда и т.д. Согласно рис. 6.1,б, внешняя сосредоточенная сила действует на одну частицу I ряда, которая в свою очередь воздействует на две частицы П.
Таким образом, с увеличением глубины количество твердых частиц, на которые передается давление, увеличивается и в свою очередь происходит рассеивание напряжений (см. рис. 6.1), т.е. напряжение от приложенной внешней силы распределяется в массиве под некоторым углом.
При оценке напряжений, действующих в грунтах, реальные силы, приложенные к отдельным грунтовым частицам, заменяют воображаемыми силами, распределенными по всему объему или сечению грунтового массива.
Величину этих сил, отнесенных к единице площади сечения массива, и принимают условно за величину напряжений в грунте.
Формирование напряжений в грунтовой толще происходит не мгновенно при приложении нагрузки, а может развиваться весьма длительное время. Это связано со скоростью проектирования деформаций и особенно сильно проявляется в глинистых грунтах, где процессы фильтрационной консолидации (консолидация — процесс уплотнения грунта по мере удаления воды из его пор) и ползучести развиваются очень медленно.
Изучение напряженного состояния грунта можно проводить по двум направлениям:
- экспериментальным путем, измеряя непосредственно давления в грунте при помощи специального оборудования;
- теоретическим путем, используя методы теории упругости, так как здесь мы имеем дело с объемным напряженным состоянием грунтов.
Работа грунта основания существенно отличается от работы материала строительной конструкции, сооружений и т.д. Отличия состоят в следующем:
- грунты имеют малую прочность и большую деформируемость по сравнению с материалами конструкций; прочность их в десятки и сотни раз больше по сравнению с грунтом основания, а деформируемость, наоборот, меньше;
- деформация грунта во времени при постоянной нагрузке возрастает (например,
для глинистых грунтов процессы консолидации и ползучести) (рис.
6.2).
Рис. 6.2. Деформация грунта во времени
Как было сказано выше, деформация глинистых грунтов может длиться годами и даже десятки лет;
- неоднородность грунтов и их свойств в основании фундаментов, а следовательно, прочности и деформируемости (понятие анизотропность), т.е. неодинаковые свойства грунтов в различных направлениях;
- неоднородность напряжений в грунтовой толще в естественных условиях и сложность их изменений под действием внешней нагрузки;
- различие закономерностей изменения напряженного состояния грунтов,
однородных по составу, но при различной величине внешней нагрузки (график
Герсеванова).
Работа оснований сооружений рассматривается применительно к плоской, пространственной, осесимметричной или контактной задаче в зависимости от принятой расчетной схемы.
По схеме плоской задачи рассчитываются ленточные фундаменты, основания подпорных стен, насыпей, дамб, а также фундаменты плит водосливных плотин, шлюзов, сухих доков и т.д.
Таким образом, по этой схеме напряжения распределяются в одной плоскости, а в перпендикулярном направлении они будут равны нулю или постоянны (рис. 6.3).
Рис. 6.3. Схема к плоской задаче
По схеме осевой симметрии (рис. 6.4) рассчитываются фундаменты водонапорных башен, доменных печей, фабричных труб, днища резервуаров, газгольдеров и т.д.
Рис. 6.4. Схема к осесимметричной задаче
По схеме пространственной задачи рассчитываются фундаменты под отдельные колонны и сплошные фундаментные плиты под сетку колонн.